Fast iteratively reweighted least squares for lp regularized image deconvolution and reconstruction
نویسندگان
چکیده
Iteratively reweighted least squares (IRLS) is one of the most effective methods to minimize the lp regularized linear inverse problem. Unfortunately, the regularizer is nonsmooth and nonconvex when 0 < p < 1. In spite of its properties and mainly due to its high computation cost, IRLS is not widely used in image deconvolution and reconstruction. In this paper, we first derive the IRLS method from the perspective of majorization minimization and then propose an Alternating Direction Method of Multipliers (ADMM) to solve the reweighted linear equations. Interestingly, the resulting algorithm has a shrinkage operator that pushes each component to zero in a multiplicative fashion. Experimental results on both image deconvolution and reconstruction demonstrate that the proposed method outperforms state-of-the-art algorithms in terms of speed and recovery quality.
منابع مشابه
Convergence of the reweighted ℓ 1 minimization algorithm for ℓ 2-ℓ p minimization
The iteratively reweighted l1 minimization algorithm (IRL1) has been widely used for variable selection, signal reconstruction and image processing. In this paper, we show that any sequence generated by the IRL1 is bounded and any accumulation point is a stationary point of the l2-lp minimization problem with 0 < p < 1. Moreover, the stationary point is a global minimizer and the convergence ra...
متن کاملA comparison of typical ℓp minimization algorithms
Recently, compressed sensing has been widely applied to various areas such as signal processing, machine learning, and pattern recognition. To find the sparse representation of a vector w.r.t. a dictionary, an l1 minimization problem, which is convex, is usually solved in order to overcome the computational difficulty. However, to guarantee that the l1 minimizer is close to the sparsest solutio...
متن کاملA Generalized Krylov Subspace Method for ℓp-ℓq Minimization
This paper presents a new efficient approach for the solution of the lp-lq minimization problem based on the application of successive orthogonal projections onto generalized Krylov subspaces of increasing dimension. The subspaces are generated according to the iteratively reweighted least-squares strategy for the approximation of lp/lq-norms by weighted l2-norms. Computed image restoration exa...
متن کاملFast Image Deconvolution using Hyper-Laplacian Priors
The heavy-tailed distribution of gradients in natural scenes have proven effective priors for a range of problems such as denoising, deblurring and super-resolution. These distributions are well modeled by a hyper-Laplacian ( p(x) ∝ e−k|x|α ) , typically with 0.5 ≤ α ≤ 0.8. However, the use of sparse distributions makes the problem non-convex and impractically slow to solve for multi-megapixel ...
متن کاملA Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction
Nonconvex optimization has shown that it needs substantially fewer measurements than l 1 minimization for exact recovery under fixed transform/overcomplete dictionary. In this work, two efficient numerical algorithms which are unified by the method named weighted two-level Bregman method with dictionary updating (WTBMDU) are proposed for solving lp optimization under the dictionary learning mod...
متن کامل